ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Thomas Holschuh, Scott Watson, David Chichester
Nuclear Technology | Volume 205 | Number 10 | October 2019 | Pages 1336-1345
Technical Paper | doi.org/10.1080/00295450.2019.1599613
Articles are hosted by Taylor and Francis Online.
The Transient Reactor Test (TREAT) facility, located at Idaho National Laboratory, restarted transient operations in 2018 following an extended shutdown. It is of interest to establish a methodology and capability to obtain an accurate estimate of the total number of fissions produced in a fissionable test item during a transient at TREAT. Uranium wires were irradiated in TREAT as part of a transient prescription test program, and gamma-ray spectrometry was performed on the wires following irradiation using a high-purity germanium detector. Many fission products are useful for estimating the number of fissions produced in a sample using gamma-ray spectrometry; at TREAT with the time periods used for analysis, the isotopes of interest include 95Zr, 95Nb, 103Ru, 140Ba, and 140La. The number of fissions per gram of 235U determined from these measurements establishes an estimate for future experiments to be performed in the core when a similar configuration is used with a similar transient prescription.