ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Daniel T. Willcox, James R. Parry
Nuclear Technology | Volume 205 | Number 10 | October 2019 | Pages 1302-1311
Technical Paper | doi.org/10.1080/00295450.2019.1590075
Articles are hosted by Taylor and Francis Online.
The Transient Reactor Test Facility has been restarted after more than 20 years in a safe standby condition. The plan to bring the reactor back into operation included a typical core characterization that was historically performed every time the core was reconfigured for a new experiment campaign. The core characterization included determining initial critical position of the control rods, a heat balance run for calibration of the nuclear instruments to enable the indication of reactor power, control rod worth measurements, and a series of three temperature-limited transients increasing in the amount of reactivity inserted as a step for the interpolation of set points for the reactor trip system and reactivity insertion limits. The heat balance and control rod worth measurements are discussed in this paper. After critical control rod position was determined, a heat balance operation was used to position the nuclear instruments for correct power indication. This was followed by control rod differential worth measurements to generate the control rod worth curves used by the automatic reactor control system for control of the reactor during transient operations. These restart evolutions are summarized here, and the results are compared to the historic measurements.