ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Daniel T. Willcox, James R. Parry
Nuclear Technology | Volume 205 | Number 10 | October 2019 | Pages 1302-1311
Technical Paper | doi.org/10.1080/00295450.2019.1590075
Articles are hosted by Taylor and Francis Online.
The Transient Reactor Test Facility has been restarted after more than 20 years in a safe standby condition. The plan to bring the reactor back into operation included a typical core characterization that was historically performed every time the core was reconfigured for a new experiment campaign. The core characterization included determining initial critical position of the control rods, a heat balance run for calibration of the nuclear instruments to enable the indication of reactor power, control rod worth measurements, and a series of three temperature-limited transients increasing in the amount of reactivity inserted as a step for the interpolation of set points for the reactor trip system and reactivity insertion limits. The heat balance and control rod worth measurements are discussed in this paper. After critical control rod position was determined, a heat balance operation was used to position the nuclear instruments for correct power indication. This was followed by control rod differential worth measurements to generate the control rod worth curves used by the automatic reactor control system for control of the reactor during transient operations. These restart evolutions are summarized here, and the results are compared to the historic measurements.