ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Anthony W. LaPorta
Nuclear Technology | Volume 205 | Number 10 | October 2019 | Pages 1290-1301
Technical Paper | doi.org/10.1080/00295450.2019.1565471
Articles are hosted by Taylor and Francis Online.
The Transient Reactor Test (TREAT) facility was constructed in 1958 and became operational in 1959. The TREAT reactor is an air-cooled test reactor that can be operated in multiple modes: up to 20 GW for short-duration “burst” pulses (approximately 100 to 200 ms) producing an intense neutron pulse; lower power (megawatt range)–shaped transients intended to simulate fuel heating prior to accident conditions being imposed; or in a low power mode of up to 120 kW for experiment preconditioning or neutron radiography. TREAT operated from 1959 through 1994 when it was put into a standby condition. With the accident at Fukashima-Daiichi that resulted in extensive fuel failure, the U.S. Department of Energy selected TREAT for restart and irradiation of new accident-tolerant fuel designs for U.S. commercial nuclear plants. This paper discusses the basic process that was used to perform the initial criticality following the TREAT extended shutdown operation from 1994 to 2017.