ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
J. El Asri, O. El Bounagui, N. Tahiri, H. Erramli, A. Chetaine
Nuclear Technology | Volume 205 | Number 9 | September 2019 | Pages 1236-1244
Technical Paper | doi.org/10.1080/00295450.2019.1590071
Articles are hosted by Taylor and Francis Online.
The stopping power of Formvar and Mylar polymeric materials for energy region (0.1 to 1.0) MeV/nucleon 19F, 23Na, 24Mg, 27Al, 28Si, 31P, 32S, 35Cl, and 40Ar ions have been determined. The energy loss and stopping power of Mylar were calculated for 11B having energies between 0.31 and 0.85 MeV/nucleon. In fact, the factor ξe and exponential function f(E) involved in Lindhard, Scharff, and Schiott (LSS) theory has been modified in light of the available simulation electronic stopping power values. The results obtained by the LSS modified theory and Monte Carlo simulations are compared with MSTAR, the SRIM predictions code, and experimental data. The obtained results show a close agreement qualitatively with MSTAR, experimental data, and those generated by the SRIM computer code.