ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 Under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into an annual event—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate its up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft-misunderstood technology.
J. El Asri, O. El Bounagui, N. Tahiri, H. Erramli, A. Chetaine
Nuclear Technology | Volume 205 | Number 9 | September 2019 | Pages 1236-1244
Technical Paper | doi.org/10.1080/00295450.2019.1590071
Articles are hosted by Taylor and Francis Online.
The stopping power of Formvar and Mylar polymeric materials for energy region (0.1 to 1.0) MeV/nucleon 19F, 23Na, 24Mg, 27Al, 28Si, 31P, 32S, 35Cl, and 40Ar ions have been determined. The energy loss and stopping power of Mylar were calculated for 11B having energies between 0.31 and 0.85 MeV/nucleon. In fact, the factor ξe and exponential function f(E) involved in Lindhard, Scharff, and Schiott (LSS) theory has been modified in light of the available simulation electronic stopping power values. The results obtained by the LSS modified theory and Monte Carlo simulations are compared with MSTAR, the SRIM predictions code, and experimental data. The obtained results show a close agreement qualitatively with MSTAR, experimental data, and those generated by the SRIM computer code.