ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
S. Joseph Cope, Robert B. Hayes
Nuclear Technology | Volume 205 | Number 9 | September 2019 | Pages 1219-1235
Technical Paper | doi.org/10.1080/00295450.2019.1590074
Articles are hosted by Taylor and Francis Online.
The alpha activity discrimination problem between radon progeny and transuranic (TRU) isotopes is evaluated at the times relevant for radiological emergency response using temporal decay properties. This study evaluates various effects from naturally occurring radon progeny creating alpha spectral overlap with the TRU region of interest. The methodology helps to address the potential masking of a radiological threat at worst or, at best, inhibiting response efforts due to delays caused by high levels of radon progeny. This work seeks to provide a rapid, conservative TRU estimation method in as little as 30 min. Surrogate TRU activity is introduced to the assays via check sources as a validation test for discrimination against varied levels of radon progeny collected on environmental air samples. A 2-h activity decay profile counting window was sectioned into multiple combinations of 30-min increments to investigate optimal counting segments and to simulate potential field-collection scenarios with limited resource availability. The experiment sought to discriminate low levels of introduced TRU activity comparable to the natural background on each sampled filter. Using this approach, the study confirmed the utility of the estimation methodology in as little as 30 min. Additional measurement time taken in the decay profile demonstrated marked improvements in both accuracy and precision of the TRU activity estimate as expected. Studies on the potential functional dependence of fitting parameters that influence the TRU estimate and associated uncertainty may improve further model development. The methodology is flexible to accommodate any gross alpha/beta scalar counter and is designed to be implemented within a graded approach based on time and resource availability present in the response. The estimation framework enables rapid air assay with a proper technical basis in times not currently realized in radiological emergency response.