ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Robert Spears, Swetha Veeraraghavan, Justin Coleman
Nuclear Technology | Volume 205 | Number 9 | September 2019 | Pages 1205-1218
Technical Paper | doi.org/10.1080/00295450.2019.1584492
Articles are hosted by Taylor and Francis Online.
Seismic analyses of nuclear facilities require the use of validated numerical models that can realistically reproduce the response of soils during earthquakes. The nested surface nonlinear, hysteretic soil constitutive model is one of the soil constitutive models that is widely used because of (1) its lower number of free parameters compared to other nonlinear soil constitutive models and (2) the ease of calibrating these parameters using the commonly available soil data, i.e., G/Gmax and damping curves, as a function of shear strain. This material model is available in the commercial finite element software packages LS-DYNA and Abaqus as well as in the open source finite element tool Mastodon. The purpose of this study is to estimate the parameters required for this material model from the soil data available for the Lotung site and to demonstrate that this nonlinear soil constitutive model used in a time domain, finite element analysis can reasonably reproduce the actual measured soil motions recorded at Lotung during the LSST07 event on May 20, 1986. Results are presented from all the three software packages mentioned above using the same material model.