ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Mohammad Abdul Motalab, Woosong Kim, Yonghee Kim
Nuclear Technology | Volume 205 | Number 9 | September 2019 | Pages 1185-1204
Technical Paper | doi.org/10.1080/00295450.2019.1582942
Articles are hosted by Taylor and Francis Online.
This paper is concerned with an improved two-step methodology based on the nodal equivalence theory for more accurate and consistent CANDU reactor analysis. In addition, the albedo-corrected parameterized equivalence constants (APEC) method is introduced to achieve further improvement of the nodal solution by correcting the burnup-dependent cross sections (XSs) and discontinuity factors (DFs). The APEC algorithm is incorporated into an in-house nodal expansion method (NEM) code. Colorset calculations are performed to obtain physically meaningful leakage information of the fuel lattice, and the results are used for generating burnup-dependent APEC functions to correct groupwise XSs and DFs. The NEM-equivalent reference DF on each surface of the colorset are calculated for a coarse mesh (1 × 1 mesh per fuel assembly) using the net-current boundary conditions. These reference DFs are used to determine the DF APEC functions. A separate set of burnup-dependent APEC functions is generated for the fuel lattice loaded with a reactivity device. Both position- and burnup-dependent APEC functions are applied for accurate CANDU core analysis. A two-dimensional CANDU whole-core nodal analysis is performed to show the effectiveness of the APEC corrections. Moreover, several variants of the original benchmark are also analyzed with the same APEC functions to confirm the general applicability of the predetermined APEC functions. In addition, NEM calculations are performed for a CANDU core with a reactivity device and its variants with different burnup profiles. Numerical results show that the APEC-based two-step nodal methodology can provide an accurate and consistent solution for burned CANDU cores with reactivity device.