ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Sadia Khalid, Idrees Ahmad, Awais Zahur
Nuclear Technology | Volume 205 | Number 9 | September 2019 | Pages 1175-1184
Technical Paper | doi.org/10.1080/00295450.2019.1580530
Articles are hosted by Taylor and Francis Online.
The long-term, safe, and reliable operation of a reactor coolant pump is vital for the safety of a nuclear reactor. In the case of a station blackout or power failure to the pump, the inertia of rotating parts of the pump should provide sufficient pumping capacity or flow rate to remove decay heat to ensure the safety of the reactor. An accurate flow coastdown analysis is required for the design and manufacture of reactor coolant pumps. In this paper a mathematical model is formulated to study flow coastdown of CHASNUPP-2, which is a pressurized water reactor. Frictional losses in the pump are also incorporated in the model to get accurate results. Two important parameters of the model are inertia of the pump impeller and inertia of the coolant, which are related to each other in the form of effective energy ratio. The effective energy ratio is made variable in order to accurately model the flow coastdown transient. The model is solved numerically to get flow coastdown curves and the comparison of the theoretical and experimental results shows a good agreement between them.