ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Sadia Khalid, Idrees Ahmad, Awais Zahur
Nuclear Technology | Volume 205 | Number 9 | September 2019 | Pages 1175-1184
Technical Paper | doi.org/10.1080/00295450.2019.1580530
Articles are hosted by Taylor and Francis Online.
The long-term, safe, and reliable operation of a reactor coolant pump is vital for the safety of a nuclear reactor. In the case of a station blackout or power failure to the pump, the inertia of rotating parts of the pump should provide sufficient pumping capacity or flow rate to remove decay heat to ensure the safety of the reactor. An accurate flow coastdown analysis is required for the design and manufacture of reactor coolant pumps. In this paper a mathematical model is formulated to study flow coastdown of CHASNUPP-2, which is a pressurized water reactor. Frictional losses in the pump are also incorporated in the model to get accurate results. Two important parameters of the model are inertia of the pump impeller and inertia of the coolant, which are related to each other in the form of effective energy ratio. The effective energy ratio is made variable in order to accurately model the flow coastdown transient. The model is solved numerically to get flow coastdown curves and the comparison of the theoretical and experimental results shows a good agreement between them.