ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Ke Deng, Mingjun Zhang, Xijun Wu, Qin Zhang, Guo Yang, Zhaowei Ma, Fei Wei, Guanghua Wang, Wei Liu
Nuclear Technology | Volume 205 | Number 9 | September 2019 | Pages 1143-1153
Technical Paper | doi.org/10.1080/00295450.2019.1590076
Articles are hosted by Taylor and Francis Online.
Because of its high content in irradiated nuclear graphite, tritium is treated as one of the most important radionuclides, and it should be carefully decontaminated before the final disposal of nuclear graphite. Tritium has similar chemical and physical characteristics to those of hydrogen; therefore, in this research, the adsorption and desorption of tritium in nuclear graphite using hydrogen were studied. Three kinds of nuclear graphite, IG-110, NBG-18, and NG-CT-10, were used to conduct adsorption and desorption experiments using a new method based on gas chromatography; subsequently, a first-principles calculation on graphene was carried out to simulate the desorption of hydrogen from graphite. The results showed that tritium can be weakly and strongly adsorbed in nuclear graphite. The differences found in the amount of weak adsorption within nuclear graphite were mainly due to the graphite’s porosity and Brunauer-Emmett-Teller surface area, as reported previously in similar research. The mechanism for the strong adsorption was not explained clearly; it could be attributed to the results of a combination of the various physical properties of the graphite, especially the average pore size. The amount of weakly adsorbed hydrogen ranged from 48.4% to 95.2% of the total amount of adsorption for the nuclear graphite working at a temperature of 350°C. The weakly adsorbed tritium easily escaped from the nuclear graphite, indicating that this fraction of tritium would be the main source of pollution during the dismantling or the transportation of decommissioned graphite materials. In addition, the strongly adsorbed hydrogen began to be desorbed when the nuclear graphite was heated over 600°C, and 14% to 71% of the stably adsorbed hydrogen was desorbed when the temperature reached 700°C. A first-principles calculation indicated the activation energy for desorption of tritium from graphene to be about 2.17 eV.