ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
P. K. Mohapatra, P. K. Verma, D. R. Prabhu, D. R. Raut
Nuclear Technology | Volume 205 | Number 8 | August 2019 | Pages 1119-1125
Regular Technical Paper | doi.org/10.1080/00295450.2019.1575126
Articles are hosted by Taylor and Francis Online.
Extraction of 137Cs from 1.6 L of diluted aqueous simulated high-level waste (SHLW) (at 1 M HNO3) was carried out using a two-stage centrifugal contactor system (bowl volume 200 mL) into 2 × 10−3 M solution of calix[4]arene-bis-1,2-benzo-crown-6 in phenyltrifluoromethyl sulphone. Batch extraction studies were done to optimize the conditions for the centrifugal contactor runs. Extraction and stripping experiments were carried out at 2000 rotations per minute, keeping the organic and aqueous flow rate at 15 mL/min. Alamine 336 was used at a very low concentration (0.4 vol %) to effect efficient stripping of the extracted radiocesium. The studies were carried out using SHLW as well and the results indicated quantitative extraction and stripping in the first stage of operations while the repeat runs suggested lower extraction as well as stripping efficiencies.