ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Duke Energy submits an ESP application to the NRC
Following up on an October announcement on plans to invest more heavily in nuclear power, Duke Energy closed out 2025 by submitting an early site permit application to the Nuclear Regulatory Commission. This ESP application is for a site near the Belews Creek Steam Station, a coal and natural gas plant in Stokes County, N.C., where Duke has been pursuing a new nuclear project for two years.
Elmar Eidelpes, Luis F. Ibarra, Ricardo A. Medina
Nuclear Technology | Volume 205 | Number 8 | August 2019 | Pages 1095-1118
Regular Technical Paper | doi.org/10.1080/00295450.2019.1575127
Articles are hosted by Taylor and Francis Online.
This study presents two statistical models that were developed to estimate the expected peak cladding hoop stress (CHS) and the amount of hydrogen in pressurized water reactor (PWR) spent nuclear fuel (SNF) rod cladding. Peak CHS is caused by high rod internal pressure during vacuum drying performed when transferring SNF to dry storage. During in-reactor operation of PWR fuel, the rod cladding tends to corrode and uptake hydrogen. The hydrogen content and CHS control hydride-related cladding embrittlement at low material temperatures. The two methodologies developed in this study were used to create a generic rod database with information on PWR SNF conditions. This database provides information on 100 000 randomly selected rods that form part of the current U.S. SNF inventory. According to the statistical results, the expected hydrogen content of PWR rod cladding is in a sensitive interval that may facilitate hydride reorientation. However, the modeling results suggest that the expected peak CHS of the selected rods is significantly below 90 MPa, which is the estimated lower bound stress necessary to trigger significant radial hydride embrittlement in cladding after being cooled to room temperature. Further, the results indicate that hydride embrittlement due to excessive hydrogen in cladding is unlikely. Therefore, a low probability of hydride-related embrittlement of PWR SNF cladding currently stored in the U.S. inventory is anticipated, even under consideration of low cladding temperatures after long-term SNF dry storage.