ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Elmar Eidelpes, Luis F. Ibarra, Ricardo A. Medina
Nuclear Technology | Volume 205 | Number 8 | August 2019 | Pages 1095-1118
Regular Technical Paper | doi.org/10.1080/00295450.2019.1575127
Articles are hosted by Taylor and Francis Online.
This study presents two statistical models that were developed to estimate the expected peak cladding hoop stress (CHS) and the amount of hydrogen in pressurized water reactor (PWR) spent nuclear fuel (SNF) rod cladding. Peak CHS is caused by high rod internal pressure during vacuum drying performed when transferring SNF to dry storage. During in-reactor operation of PWR fuel, the rod cladding tends to corrode and uptake hydrogen. The hydrogen content and CHS control hydride-related cladding embrittlement at low material temperatures. The two methodologies developed in this study were used to create a generic rod database with information on PWR SNF conditions. This database provides information on 100 000 randomly selected rods that form part of the current U.S. SNF inventory. According to the statistical results, the expected hydrogen content of PWR rod cladding is in a sensitive interval that may facilitate hydride reorientation. However, the modeling results suggest that the expected peak CHS of the selected rods is significantly below 90 MPa, which is the estimated lower bound stress necessary to trigger significant radial hydride embrittlement in cladding after being cooled to room temperature. Further, the results indicate that hydride embrittlement due to excessive hydrogen in cladding is unlikely. Therefore, a low probability of hydride-related embrittlement of PWR SNF cladding currently stored in the U.S. inventory is anticipated, even under consideration of low cladding temperatures after long-term SNF dry storage.