ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Jacob A. Farber, Daniel G. Cole, Ahmad Y. Al Rashdan, Vaibhav Yadav
Nuclear Technology | Volume 205 | Number 8 | August 2019 | Pages 1043-1052
Technical Paper – Special section on Big Data for Nuclear Power Plants | doi.org/10.1080/00295450.2018.1534484
Articles are hosted by Taylor and Francis Online.
This paper presents data-driven methods to detect loss-of-coolant accidents (LOCAs) in the primary side of a pressurized water reactor. Process data for a variety of accident scenarios have been generated and collected using a generic pressurized water reactor simulator. The data have been used to train kernel density functions, which estimate nonparametric probability density functions based on training data. These density functions have then been used with Bayesian hypothesis testing and maximum likelihood estimation to detect the onset of the LOCAs and to identify where in the primary side the leaks have occurred. The methods have been able to detect the LOCAs for all scenarios tested with an average detection delay of one-seventh the time for the reactor to trip. Furthermore, the methods have been able to correctly identify the leak locations for 92.3% of the scenarios tested, with higher success rates for larger leaks.