ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Flamanville-3 reaches full power
France’s state-owned electric utility EDF has announced that Flamanville-3—the country’s first EPR—reached full nuclear thermal power for the first time, generating 1,669 megawatts of gross electrical power. This major milestone is significant in terms of both this project and France’s broader nuclear sector.
Ji Hyun Lee, Alper Yilmaz, Richard Denning, Tunc Aldemir
Nuclear Technology | Volume 205 | Number 8 | August 2019 | Pages 1035-1042
Technical Paper – Special section on Big Data for Nuclear Power Plants | doi.org/10.1080/00295450.2018.1541394
Articles are hosted by Taylor and Francis Online.
An initiating event that disrupts regular nuclear power plant (NPP) operation can result in a variety of different scenarios as time progresses depending on the response of standby safety systems and operator actions to bring the plant to a safe, stable state, or the uncertainties in accident phenomenology. Depending on the severity of the accident and potential magnitude of release of radioactive material into the environment, off-site emergency response such as evacuation may be warranted. An approach that could be used for real-time emergency guidance to support the declaration of a site emergency and to guide off-site response is presented using observable plant data in the early stages of a severe accident. The approach is based on the simulation of the possible NPP behavior following an initiating event and projects the likelihood of different levels of off-site release of radionuclides from the plant using deep learning (DL) techniques. Training of the DL process is accomplished using results of a large number of scenarios generated with the Analysis of Dynamic Accident Progression Trees/MELCOR/Radiological Assessment System for Consequence Analysis (RASCAL) computer codes to simulate the variety of possible consequences following a station blackout event (similar to the Fukushima accident) for a large pressurized water reactor. The ability of the model to predict the likelihood of different levels of consequences is assessed using a separate test set of MELCOR/RASCAL calculations.