ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
A. R. Massih
Nuclear Technology | Volume 205 | Number 7 | July 2019 | Pages 992-1001
Technical Note | doi.org/10.1080/00295450.2019.1568102
Articles are hosted by Taylor and Francis Online.
Oxidation of UO2 fuel under off-normal and normal reactor conditions occurs when fuel cladding fails, thereby allowing steam/water to enter the fuel rod. The steam/water will react with the fuel to produce UO2+x thus releasing hydrogen, with x standing for the amount of interstitial oxygen ions above the stoichiometric value.
In this technical note the impact of fuel oxidation on fission gas release (FGR) is modeled and discussed. The classical diffusion equation is used to describe migration and release of fission product gas (Xe) in UO2+x under time-varying postirradiation annealing conditions. We assume that the main quantity affected by fuel oxidation is the effective diffusivity of fission gas. Fuel oxidation enhances the diffusivity as a function of x in UO2+x in a parabolic fashion for 0.005 ≤ x ≤ 0.12 in the temperature range of 1000 ≤ T ≤ 1600 K. We first benchmark our model against an annealing test in which for x = 0.004 the Xe release fraction was measured as a function of time (temperature) during annealing. Furthermore, we apply the model to simulate a series of postirradiation annealing tests on UO2+x fuel, in which FGR fractions were measured for a given thermal ramp history in the range 0.00 ≤ x ≤ 0.66. The results of our computations in the range 0.004 ≤ x ≤ 0.20 show good agreement with measurements.