ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Helen Winberg-Wang, Ivars Neretnieks, Mikko Voutilainen
Nuclear Technology | Volume 205 | Number 7 | July 2019 | Pages 964-977
Regular Technical Paper | doi.org/10.1080/00295450.2019.1573620
Articles are hosted by Taylor and Francis Online.
Uranine is a dye commonly used in tracer experiments; it is chosen for its high visibility even at low concentrations. Uranine solutions are slightly denser than water at the same temperature. However, in laboratory experiments uranine solutions have been known to occasionally show unpredictable flow behaviors. This paper investigates the possible effect of light-induced density change to explain some of these behaviors. Uranine has a wide light absorption spectrum for visible light, which can heat the dye solution and lower its density to below that of the surrounding water, which induces buoyancy-driven flow. Simulations are made in both one dimension and two dimensions to determine the extent of the effect. The results are then compared to different experiments with unanticipated flow patterns.