ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Helen Winberg-Wang, Ivars Neretnieks, Mikko Voutilainen
Nuclear Technology | Volume 205 | Number 7 | July 2019 | Pages 964-977
Regular Technical Paper | doi.org/10.1080/00295450.2019.1573620
Articles are hosted by Taylor and Francis Online.
Uranine is a dye commonly used in tracer experiments; it is chosen for its high visibility even at low concentrations. Uranine solutions are slightly denser than water at the same temperature. However, in laboratory experiments uranine solutions have been known to occasionally show unpredictable flow behaviors. This paper investigates the possible effect of light-induced density change to explain some of these behaviors. Uranine has a wide light absorption spectrum for visible light, which can heat the dye solution and lower its density to below that of the surrounding water, which induces buoyancy-driven flow. Simulations are made in both one dimension and two dimensions to determine the extent of the effect. The results are then compared to different experiments with unanticipated flow patterns.