ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Quality is key: Investing in advanced nuclear research for tomorrow’s grid
As the energy sector faces mounting pressure to grow at an unprecedented pace while maintaining reliability and affordability, nuclear technology remains an essential component of the long-term solution. Southern Company stands out among U.S. utilities for its proactive role in shaping these next-generation systems—not just as a future customer, but as a hands-on innovator.
Helen Winberg-Wang, Ivars Neretnieks, Mikko Voutilainen
Nuclear Technology | Volume 205 | Number 7 | July 2019 | Pages 964-977
Regular Technical Paper | doi.org/10.1080/00295450.2019.1573620
Articles are hosted by Taylor and Francis Online.
Uranine is a dye commonly used in tracer experiments; it is chosen for its high visibility even at low concentrations. Uranine solutions are slightly denser than water at the same temperature. However, in laboratory experiments uranine solutions have been known to occasionally show unpredictable flow behaviors. This paper investigates the possible effect of light-induced density change to explain some of these behaviors. Uranine has a wide light absorption spectrum for visible light, which can heat the dye solution and lower its density to below that of the surrounding water, which induces buoyancy-driven flow. Simulations are made in both one dimension and two dimensions to determine the extent of the effect. The results are then compared to different experiments with unanticipated flow patterns.