ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K., Japan to extend decommissioning partnership
The U.K.’s Sellafield Ltd. and Japan’s Tokyo Electric Power Company have pledge to continue to work together for up to an additional 10 years, extending a cooperative agreement begun in 2014 following the 2011 tsunami that resulted in the irreparable damage of TEPCO’s Fukushima Daiichi plant.
Faten N. Al Zubaidi, Kyle L. Walton, Robert V. Tompson, Tushar K. Ghosh, Sudarshan K. Loyalka
Nuclear Technology | Volume 205 | Number 7 | July 2019 | Pages 951-963
Regular Technical Paper | doi.org/10.1080/00295450.2019.1573618
Articles are hosted by Taylor and Francis Online.
The total hemispherical emissivity of A508/A533B alloy steels was measured for conditions of interest in nuclear plant safety. The effect of long-term oxidation on the emissivity of A508/A533B was simulated by oxidizing test samples using a three-zone tube furnace at temperatures of 573 and 773 K. An apparatus built and operated in compliance with the American Society for Testing and Materials C835-06 testing standard was used to measure the total hemispherical emissivity for the following surface conditions: (1) mirror-like polished (unoxidized), (2) polished surface oxidized in air, (3) wire-cut electrical discharge machining (EDM), and (4) EDM-cut surface oxidized in air. The emissivity of polished (unoxidized) A508/A533B strips varied from 0.16 to 0.24 within the temperature range from 552 to 1180 K. Increasing the oxidation time of polished A508/A533B from 10 to 100 h at 573 K provided slight increase in emissivity, whereas increasing the oxidation temperature from 573 to 773 K for a 10-h duration provided over a threefold increase in emissivity. EDM-cut surfaces had an emissivity of 0.51 at 464 K to 0. 54 at 845 K due to the inherent roughness and the presence of a recast layer and possible oxidation layer. Oxidizing EDM-cut A508/A533B in air at 573 K increased the emissivity compared to the unoxidized EDM-cut A508/A533B, but no additional increase in emissivity occurred from 500- to 1000-h durations. Further oxidation of A508/A533B oxidized at 573 K for 1000 h for an additional 500 h at 773 K resulted in spallation of the oxide layer. The emissivity of the sample with loose oxide removed had similar emissivity for EDM-cut A508/A533B at 537 K.