All licensable critical heat flux (CHF) correlations/regressions models must determine and demonstrate a “design limit” that bounds the CHF correlation predicted/measured residuals via a 95/95 tolerance limit. This is a quick and straightforward calculation when the residuals are well behaved, exhibiting no trends and no heteroscedasticity. However, as models become increasingly complex and as required parameter ranges become more extended, the likelihood of nonconservative subregions increases. A suggested solution from the open literature is the overly conservative approach of basing the design limit on the subregion with the largest variance. This approach unavoidably overly constrains the overall regression model and often is too conservative for subregions due to a loss in degrees of freedom. Quantile regressions alleviate these issues by smoothly varying the design limit based on covariates and adapting to each subregion. Thus, a quantile regression achieves the objective of appropriately bounding all subregions without overly biasing the overall regression model.