ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Katy Huff on the impact of loosening radiation regulations
Katy Huff, former assistant secretary of nuclear energy at the Department of Energy, recently wrote an op-ed that was published in Scientific American.
In the piece, Huff, who is an ANS member and an associate professor in the Department of Nuclear, Plasma, and Radiological Engineering at the University of Illinois–Urbana-Champaign, argues that weakening Nuclear Regulatory Commission radiation regulations without new research-based evidence will fail to speed up nuclear energy development and could have negative consequences.
William Boyd, Adam Nelson, Paul K. Romano, Samuel Shaner, Benoit Forget, Kord Smith
Nuclear Technology | Volume 205 | Number 7 | July 2019 | Pages 928-944
Regular Technical Paper | doi.org/10.1080/00295450.2019.1571828
Articles are hosted by Taylor and Francis Online.
High-fidelity deterministic transport codes require highly accurate multigroup cross sections (MGXS). Monte Carlo is increasingly cited as a reactor-agnostic approach to MGXS generation since it is unconstrained by the engineering-based approximations that limit the applicability of deterministic MGXS generation tools. This paper introduces a new framework that uses the OpenMC Monte Carlo code to generate MGXS for use in multigroup transport codes. The openmc.mgxs module is built atop OpenMC’s Python application programming interface to process tally data output by the OpenMC executable. This paper validates the module to generate MGXS that enable the multigroup OpenMOC transport code to compute eigenvalues to within 50 pcm and fission rates to within 1% of reference solutions for two heterogeneous pressurized water reactor benchmarks.