ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Zeyun Wu, Jingang Liang, Xingjie Peng, Hany S. Abdel-Khalik
Nuclear Technology | Volume 205 | Number 7 | July 2019 | Pages 912-927
Regular Technical Paper | doi.org/10.1080/00295450.2018.1556062
Articles are hosted by Taylor and Francis Online.
This paper extends the applicability of the generalized perturbation theory (GPT)–free methodology, earlier developed for deterministic models, to Monte Carlo stochastic models. The objective of the GPT-free method is to calculate nuclear data sensitivity coefficients for generalized responses without solving the GPT response-specific inhomogeneous adjoint eigenvalue problem. The GPT-free methodology requires the capability to generate the eigenvalue sensitivity coefficients. This capability is readily available in several of the state-of-the-art Monte Carlo codes. The eigenvalue sensitivity coefficients are sampled using a statistical approach to construct a subspace of small dimension that is subsequently sampled for sensitivity information using a forward sensitivity analysis. A boiling water reactor assembly model is developed using the Oak Ridge National Laboratory Monte Carlo code KENO to demonstrate the application of the GPT-free methodology in Monte Carlo models. The response variations estimated by the GPT-free agree with the exact variations calculated by direct forward perturbations. The GPT-free method is also implemented in OpenMC and tested with the Godiva model to show its capability and feasibility in the estimation of the energy-dependent sensitivity coefficients for generalized responses in Monte Carlo models. The sensitivity results are compared against the ones acquired by the standard GPT-based methodologies. A higher order of accuracy in the sensitivity estimation is observed in the GPT-free method.