ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Zeyun Wu, Jingang Liang, Xingjie Peng, Hany S. Abdel-Khalik
Nuclear Technology | Volume 205 | Number 7 | July 2019 | Pages 912-927
Regular Technical Paper | doi.org/10.1080/00295450.2018.1556062
Articles are hosted by Taylor and Francis Online.
This paper extends the applicability of the generalized perturbation theory (GPT)–free methodology, earlier developed for deterministic models, to Monte Carlo stochastic models. The objective of the GPT-free method is to calculate nuclear data sensitivity coefficients for generalized responses without solving the GPT response-specific inhomogeneous adjoint eigenvalue problem. The GPT-free methodology requires the capability to generate the eigenvalue sensitivity coefficients. This capability is readily available in several of the state-of-the-art Monte Carlo codes. The eigenvalue sensitivity coefficients are sampled using a statistical approach to construct a subspace of small dimension that is subsequently sampled for sensitivity information using a forward sensitivity analysis. A boiling water reactor assembly model is developed using the Oak Ridge National Laboratory Monte Carlo code KENO to demonstrate the application of the GPT-free methodology in Monte Carlo models. The response variations estimated by the GPT-free agree with the exact variations calculated by direct forward perturbations. The GPT-free method is also implemented in OpenMC and tested with the Godiva model to show its capability and feasibility in the estimation of the energy-dependent sensitivity coefficients for generalized responses in Monte Carlo models. The sensitivity results are compared against the ones acquired by the standard GPT-based methodologies. A higher order of accuracy in the sensitivity estimation is observed in the GPT-free method.