ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Katy Huff on the impact of loosening radiation regulations
Katy Huff, former assistant secretary of nuclear energy at the Department of Energy, recently wrote an op-ed that was published in Scientific American.
In the piece, Huff, who is an ANS member and an associate professor in the Department of Nuclear, Plasma, and Radiological Engineering at the University of Illinois–Urbana-Champaign, argues that weakening Nuclear Regulatory Commission radiation regulations without new research-based evidence will fail to speed up nuclear energy development and could have negative consequences.
Dakota J. Allen, Stuart R. Blair, Marshall G. Millett, Martin E. Nelson
Nuclear Technology | Volume 205 | Number 6 | June 2019 | Pages 755-765
Technical Paper | doi.org/10.1080/00295450.2018.1524228
Articles are hosted by Taylor and Francis Online.
This project investigated the use of uranium nitride (UN) and uranium carbide (UC) reactor fuel and compared their performance to uranium oxide (UO2) in a nuclear reactor for space-based applications. As a baseline for analysis, the Prometheus Project reference reactor module was considered: a gas-cooled fast reactor using highly enriched UO2 fuel with 1 MW of thermal power output and a 15-year core life. An estimate of the temperature feedback effect on reactivity was made for each fuel type at the beginning, middle, and end of core life; results for each fuel were compared. This analysis indicates that UN-fueled reactors may exhibit a stabilizing negative reactivity feedback for increasing temperatures and that this benefit persists in the face of fuel composition changes over core life. The benefit of increased uranium loading density was assessed through a quantitative estimate of overall core weight for each fuel. It was found that weight savings on the order of 1000 kg can be realized for a reactor of this size by using either UC or UN rather than UO2.