ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Kyle L. Walton, Raymond K. Maynard, Tushar K. Ghosh, Robert V. Tompson, Dabir S. Viswanath, Sudarshan K. Loyalka
Nuclear Technology | Volume 205 | Number 5 | May 2019 | Pages 684-693
Technical Paper | doi.org/10.1080/00295450.2018.1521177
Articles are hosted by Taylor and Francis Online.
Total hemispherical emissivity of Alloy 617 was measured for applications in very high temperature reactors with apparatus based on ASTM Standard C835-06. The emissivity data were obtained for the following surface conditions: (1) as-received (rolled sheets) from manufacture, (2) sandblasted with aluminum oxide beads, (3) oxidation in air at temperature of 1153 K, and (4) coated with graphite powder. For the as-received Alloy 617, emissivity increased from 0.26 to 0.34 over the temperatures 593 K to 1164 K. Sandblasting Alloy 617 with alumina beads increased the emissivity to 0.46 to 0.73 in the temperature range 600 to 1300 K (emissivity increased further when higher grit size beads were used). The oxidation of Alloy 617 gave a slight increase in emissivity from 900 to 1250 K with larger increases above 1100 K. Coating of graphite onto as-received and 60-grit sandblasted increased the emissivity by roughly 0.12 and 0.20, respectively, over the measured temperature range.