ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Riyadh M. Motny, Supathorn Phongikaroon
Nuclear Technology | Volume 205 | Number 5 | May 2019 | Pages 671-683
Technical Paper | doi.org/10.1080/00295450.2018.1510698
Articles are hosted by Taylor and Francis Online.
This study was conducted to explore the feasibility of rapid setting cement (RSC) as an agent of immobilization for certain elements such as fission products or radioactive materials through evaluation of the setting time, apparent porosity, bulk density, pH value, conductivity, compressive strength, and compositions. Two different cylindrical sample groups were created. The first group was a mixture of the cement powder with deionized water (DIW) and different concentrations of Ce (0, 2, 5, 7.5, and 10 wt%). The second group included the cement powder, artificial seawater (ASW), and same Ce concentration patterns. Samples were analyzed by X-ray diffraction (XRD), fluorescence analysis (XRF), and scanning electron microscopy including energy-dispersive X-ray spectroscopy. The results showed that the final setting time and compressive strength of RSC with both solutions (DIW and ASW) decreased as Ce content increased while opposite trends were observed for the apparent porosity and bulk density of RSC under the same concentration effect. As salt contents increased, the pH decreased while the conductivity increased gradually. The XRD patterns revealed that two newly identified phases were reported, namely CeAl11O18 and Ce4.667 (SiO4)3O. The XRF results showed uniform distribution of Ce concentrations within RSC with both solutions (DIW and ASW). The morphology of matrix samples showed that the existence of Ce distributed on the pore wall or clustered with Si, Al, Mg, K, P, Fe, and O.