ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Riyadh M. Motny, Supathorn Phongikaroon
Nuclear Technology | Volume 205 | Number 5 | May 2019 | Pages 671-683
Technical Paper | doi.org/10.1080/00295450.2018.1510698
Articles are hosted by Taylor and Francis Online.
This study was conducted to explore the feasibility of rapid setting cement (RSC) as an agent of immobilization for certain elements such as fission products or radioactive materials through evaluation of the setting time, apparent porosity, bulk density, pH value, conductivity, compressive strength, and compositions. Two different cylindrical sample groups were created. The first group was a mixture of the cement powder with deionized water (DIW) and different concentrations of Ce (0, 2, 5, 7.5, and 10 wt%). The second group included the cement powder, artificial seawater (ASW), and same Ce concentration patterns. Samples were analyzed by X-ray diffraction (XRD), fluorescence analysis (XRF), and scanning electron microscopy including energy-dispersive X-ray spectroscopy. The results showed that the final setting time and compressive strength of RSC with both solutions (DIW and ASW) decreased as Ce content increased while opposite trends were observed for the apparent porosity and bulk density of RSC under the same concentration effect. As salt contents increased, the pH decreased while the conductivity increased gradually. The XRD patterns revealed that two newly identified phases were reported, namely CeAl11O18 and Ce4.667 (SiO4)3O. The XRF results showed uniform distribution of Ce concentrations within RSC with both solutions (DIW and ASW). The morphology of matrix samples showed that the existence of Ce distributed on the pore wall or clustered with Si, Al, Mg, K, P, Fe, and O.