ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Quality is key: Investing in advanced nuclear research for tomorrow’s grid
As the energy sector faces mounting pressure to grow at an unprecedented pace while maintaining reliability and affordability, nuclear technology remains an essential component of the long-term solution. Southern Company stands out among U.S. utilities for its proactive role in shaping these next-generation systems—not just as a future customer, but as a hands-on innovator.
Riyadh M. Motny, Supathorn Phongikaroon
Nuclear Technology | Volume 205 | Number 5 | May 2019 | Pages 671-683
Technical Paper | doi.org/10.1080/00295450.2018.1510698
Articles are hosted by Taylor and Francis Online.
This study was conducted to explore the feasibility of rapid setting cement (RSC) as an agent of immobilization for certain elements such as fission products or radioactive materials through evaluation of the setting time, apparent porosity, bulk density, pH value, conductivity, compressive strength, and compositions. Two different cylindrical sample groups were created. The first group was a mixture of the cement powder with deionized water (DIW) and different concentrations of Ce (0, 2, 5, 7.5, and 10 wt%). The second group included the cement powder, artificial seawater (ASW), and same Ce concentration patterns. Samples were analyzed by X-ray diffraction (XRD), fluorescence analysis (XRF), and scanning electron microscopy including energy-dispersive X-ray spectroscopy. The results showed that the final setting time and compressive strength of RSC with both solutions (DIW and ASW) decreased as Ce content increased while opposite trends were observed for the apparent porosity and bulk density of RSC under the same concentration effect. As salt contents increased, the pH decreased while the conductivity increased gradually. The XRD patterns revealed that two newly identified phases were reported, namely CeAl11O18 and Ce4.667 (SiO4)3O. The XRF results showed uniform distribution of Ce concentrations within RSC with both solutions (DIW and ASW). The morphology of matrix samples showed that the existence of Ce distributed on the pore wall or clustered with Si, Al, Mg, K, P, Fe, and O.