ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
Sentaro Takahashi, Shigeto Kawashima, Akihide Hidaka, Sota Tanaka, Tomoyuki Takahashi
Nuclear Technology | Volume 205 | Number 5 | May 2019 | Pages 646-654
Technical Paper | doi.org/10.1080/00295450.2018.1521186
Articles are hosted by Taylor and Francis Online.
A simulation model was developed to estimate the areal (surface) deposition pattern of 129mTe after the Fukushima Daiichi nuclear power plant (FDNPP) accident. Using this model, the timing and intensity of the 129mTe release were reverse estimated from the environmental monitoring data. Validation using 137Cs data showed that the model simulated atmospheric dispersion and estimated surface deposition with relatively high accuracy. The estimated surface deposition pattern of 129mTe was consistent with the actual measured pattern. The estimated time and activity of 129mTe emissions indicated that 129mTe was predominantly emitted from FDNPP Unit 3.