Seismic soil-structure interaction (SSI) analysis of nuclear facilities is an important consideration during design and retrofit. SSI tools used in the nuclear industry are currently based on an equivalent linear (EL) approach. Procedures for developing input ground motion for EL approaches are well established. However, the procedures for establishing input ground motion for nonlinear soil-structure interaction (NLSSI) analysis of nuclear facilities are not well established. A collaborative research group at Idaho National Laboratory has recently developed analytical methods and numerical tools for using NLSSI analysis for nuclear facility seismic calculations. NLSSI analysis for a nuclear facility allows for calculation of seismic wave motion through a near-field soil domain using either (a) vertically propagating shear and compressive waves, which is the current industry practice, or (b) a three-dimensional nonvertical wave field. This technical note presents an iterative procedure for establishing outcrop motion at a depth in the soil column for NLSSI analysis that uses vertically propagating shear waves.

The approach presented in this technical note starts with a known ground motion at the surface that is deconvolved to a depth, and then the obtained motion is convolved up to a different desired location of input for the NLSSI model. To demonstrate the validity of the approach, a finite element soil column that is representative of a nuclear facility site in the United States is used to produce compatible outcrop seismic time series for reduced nonlinear soil mesh depths. The developed approach for reducing the nonlinear soil column model depth is a two-step iterative method. The first step is establishing an outcrop time series at the lowest depth considered that produces the top-of-soil response spectrum of an actual recorded ground motion. The second step is providing compatible outcrop time series at a shallower depth based on the information from the first step.

A comparison of the 5% damped response spectrum from the resulting acceleration time series based on the iterated outcrop motions and the original acceleration time series is conducted. The study shows that the proposed iterative approach produced comparable results within 1% range of the original recorded time series results when sufficient iterations were performed.