ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Ara Go, Daesik Yook, Kyuhwan Jeong, GyeongMi Kim, GunHee Jung, Ser Gi Hong
Nuclear Technology | Volume 205 | Number 4 | April 2019 | Pages 605-623
Technical Paper | doi.org/10.1080/00295450.2018.1500795
Articles are hosted by Taylor and Francis Online.
The Basic Plan for High-Level Radioactive Waste Management (national WM plan) was established and promulgated, taking into consideration national and international trends on policy and technology development. In order to evaluate the safety for a facility in accordance with the national WM plan, it is essential to evaluate the spent nuclear fuel (SNF) source term. The objective of this study was to analyze Korea SNF characteristics; to propose reference SNF; and to evaluate generation amounts, radioactivity, thermal power, and isotopic composition of SNF in compliance with the national WM plan in order to provide basic information for safety research in Korea. The Automatic Multi-batch ORIGEN Runner for Evaluation of Spent fuel program (AMORES) was developed and used to evaluate inventory, radioactivity, and thermal power. Generation amounts, radioactivity, thermal power, and isotopic composition of SNF for milestones in the national WM plan were evaluated using a pressurized water reactor SNF database (DB) through 2015, and future SNF generation was estimated by taking into consideration the distribution of initial enrichment and burnup for each power plant unit. As a result, radioactivity, thermal power, and isotopic composition at each site in 2015, 2052, and 2082 differed significantly depending on the presence of new nuclear power plants. In addition, a reference SNF was proposed through statistical analysis of the SNF DB in order to utilize it for safety analysis based on various scenarios when actual SNF data cannot be available. In order to perform a more realistic safety assessment, radionuclide inventories using reference SNF and time-integrated SNF nuclide inventories using actual data were compared, and then, the best-fit reference SNF for each site and year was suggested.