ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Katy Huff on the impact of loosening radiation regulations
Katy Huff, former assistant secretary of nuclear energy at the Department of Energy, recently wrote an op-ed that was published in Scientific American.
In the piece, Huff, who is an ANS member and an associate professor in the Department of Nuclear, Plasma, and Radiological Engineering at the University of Illinois–Urbana-Champaign, argues that weakening Nuclear Regulatory Commission radiation regulations without new research-based evidence will fail to speed up nuclear energy development and could have negative consequences.
Ara Go, Daesik Yook, Kyuhwan Jeong, GyeongMi Kim, GunHee Jung, Ser Gi Hong
Nuclear Technology | Volume 205 | Number 4 | April 2019 | Pages 605-623
Technical Paper | doi.org/10.1080/00295450.2018.1500795
Articles are hosted by Taylor and Francis Online.
The Basic Plan for High-Level Radioactive Waste Management (national WM plan) was established and promulgated, taking into consideration national and international trends on policy and technology development. In order to evaluate the safety for a facility in accordance with the national WM plan, it is essential to evaluate the spent nuclear fuel (SNF) source term. The objective of this study was to analyze Korea SNF characteristics; to propose reference SNF; and to evaluate generation amounts, radioactivity, thermal power, and isotopic composition of SNF in compliance with the national WM plan in order to provide basic information for safety research in Korea. The Automatic Multi-batch ORIGEN Runner for Evaluation of Spent fuel program (AMORES) was developed and used to evaluate inventory, radioactivity, and thermal power. Generation amounts, radioactivity, thermal power, and isotopic composition of SNF for milestones in the national WM plan were evaluated using a pressurized water reactor SNF database (DB) through 2015, and future SNF generation was estimated by taking into consideration the distribution of initial enrichment and burnup for each power plant unit. As a result, radioactivity, thermal power, and isotopic composition at each site in 2015, 2052, and 2082 differed significantly depending on the presence of new nuclear power plants. In addition, a reference SNF was proposed through statistical analysis of the SNF DB in order to utilize it for safety analysis based on various scenarios when actual SNF data cannot be available. In order to perform a more realistic safety assessment, radionuclide inventories using reference SNF and time-integrated SNF nuclide inventories using actual data were compared, and then, the best-fit reference SNF for each site and year was suggested.