ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
R. Puspalata, S. Sumathi, V. Balaji, S. Rangarajan, S. Velmurugan
Nuclear Technology | Volume 205 | Number 4 | April 2019 | Pages 592-604
Technical Paper | doi.org/10.1080/00295450.2018.1509586
Articles are hosted by Taylor and Francis Online.
The main objective of this work is to see the feasibility of using an electrochemical ion-exchange process in line with decontamination for removal of radioactive metal ions from simulated decontaminated solution/metal ion–loaded cation-exchange resin. This could extend the service period of resin, and the volume of radioactive resin (organic) waste generation could be minimized. Simulated decontamination solutions/spent resins were used in the middle section of a three-compartment cell separated by cation-permeable Nafion membranes. Metal ions from this central compartment permeated through the membrane and got deposited on the cathode by application of potential. Process parameters like applied voltage, interelectrode distance, pH, decontamination formulations, and type of membrane were optimized for efficient transport of metal ions. The resin life was observed to be extended by 5 h by an electrochemical regeneration process with Nafion membrane N115. The transport process, as monitored by the change in metal ion concentration in the cathodic compartment, was observed to pass through a maximum. Maximum metal ion removal was observed with formic acid/formate formulation indicating that the presence of acidity in the anodic compartment has a synergistic effect on the transport process. The cathodic compartment deposit was characterized by X-ray diffraction, laser Raman spectroscopy, scanning electron microscopy, and energy dispersive X-ray analysis.