ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Quality is key: Investing in advanced nuclear research for tomorrow’s grid
As the energy sector faces mounting pressure to grow at an unprecedented pace while maintaining reliability and affordability, nuclear technology remains an essential component of the long-term solution. Southern Company stands out among U.S. utilities for its proactive role in shaping these next-generation systems—not just as a future customer, but as a hands-on innovator.
Youshi Zeng, Wenguan Liu, Wei Liu, Guanghua Wang, Yuan Qian, Nan Qian, Xiaoling Wu, Yu Huang, Shengwei Wu
Nuclear Technology | Volume 205 | Number 4 | April 2019 | Pages 582-591
Technical Paper | doi.org/10.1080/00295450.2018.1507200
Articles are hosted by Taylor and Francis Online.
In the Thorium-Based Molten Salt Reactor (TMSR), tritium is produced at a high rate, which results in huge difficulties regarding tritium control. Tritium distributions in a 2-MW liquid-fueled molten salt experimental reactor (TMSR-LF1) were simulated with the TMSR–Tritium Transport Analysis Code (TTAC) (TMSR-TTAC) that was developed for analysis of tritium behaviors in the TMSR. The simulation for normal operation showed that about 60% of the tritium would permeate through the metal walls of the system, 25% of the tritium was removed by the purge gas system, and 15% of the tritium was absorbed on the core graphite. In addition, the effects on tritium distribution of the chemical-redox potential in fuel salt, the tritium permeation behavior through the metal walls, and various tritium removal methods in the TMSR-LF1 have also been simulated. The simulation results based on those conditions are analyzed in this paper to improve the knowledge of tritium behavior in the TMSR-LF1 and to provide reliable methods and strategies for tritium control in the TMSR system.