ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
James E. Bevins, R. N. Slaybaugh
Nuclear Technology | Volume 205 | Number 4 | April 2019 | Pages 542-562
Technical Paper | doi.org/10.1080/00295450.2018.1496692
Articles are hosted by Taylor and Francis Online.
This paper introduces Gnowee, a modular, Python-based, open-source hybrid metaheuristic optimization algorithm (available from https://github.com/SlaybaughLab/Gnowee). Gnowee is designed for rapid convergence to nearly globally optimum solutions for complex, constrained nuclear engineering problems with mixed-integer (MI) and combinatorial design vectors and high-cost, noisy, discontinuous, black box objective function evaluations. Gnowee’s hybrid metaheuristic framework is a new combination of a set of diverse, robust heuristics that appropriately balance diversification and intensification strategies across a wide range of optimization problems. There are many potential applications for this novel algorithm both within the nuclear community and beyond. Given that a set of well-known and studied nuclear benchmarks does not exist for the purpose of testing optimization algorithms, comparisons between Gnowee and several well-established metaheuristic algorithms are made for a set of 18 established continuous, MI, and combinatorial benchmarks representing a wide range of types of engineering problems and solution space behaviors. These results demonstrate Gnoweee to have superior flexibility and convergence characteristics over this diverse set of design spaces. We anticipate this wide range of applicability will make this algorithm desirable for many complex engineering applications.