ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Yoshihisa Ikusawa, Kyoichi Morimoto, Masato Kato, Kosuke Saito, Masayoshi Uno
Nuclear Technology | Volume 205 | Number 3 | March 2019 | Pages 474-485
Technical Paper | doi.org/10.1080/00295450.2018.1494999
Articles are hosted by Taylor and Francis Online.
This study evaluated the effects of plutonium content and self-irradiation on the thermal conductivity of mixed oxide (MOX) fuel. Samples of UO2 fuel and various MOX fuels were tested. The MOX fuels had a range of plutonium contents, and some samples were stored for 20 years. The thermal conductivity of these samples was determined from thermal diffusivity measurements taken via laser flash analysis. Although the thermal conductivity decreased with increasing plutonium content, this effect was slight. The effect of self-irradiation was investigated using the stored samples. The reduction in thermal conductivity caused by self-irradiation depended on the plutonium content, its isotopic composition, and storage time. The reduction in thermal conductivity over 20 years’ storage can be predicted from the change of the lattice parameter. In addition, the decrease in thermal conductivity caused by self-irradiation was recovered with heat treatment—and was recovered almost completely at temperatures over 1200 K. From these evaluation results, we formulated an equation for thermal conductivity that is based on the classical phonon-transport model. This equation can predict the thermal conductivity of MOX fuel thermal conductivity by accounting for the influences of plutonium content and self-irradiation.