ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Charles W. Forsberg
Nuclear Technology | Volume 205 | Number 3 | March 2019 | Pages 377-396
Technical Paper | doi.org/10.1080/00295450.2018.1518555
Articles are hosted by Taylor and Francis Online.
In a low-carbon world (nuclear, wind, solar, and hydro) there is the need for assured dispatchable electricity to replace the historical role of fossil fuels. Base-load reactors can provide variable electricity to the grid by (1) sending some of their output (steam) to storage at times of low electricity prices and (2) using stored heat to produce added peak electricity at times of high electricity prices. Heat storage (steam accumulators, sensible heat, etc.) is less expensive than electricity storage (batteries, hydro pumped storage, etc.). The added cost of incrementally larger or standalone turbine generators for peak electricity production is small. However, energy storage systems (heat or electricity) can’t provide assured capacity for extreme events, be it supply side (extended low-wind or low-solar conditions in systems with high wind or solar capacity) or demand side (long periods of cold or hot weather). With heat storage systems there is the option to provide peak electricity output when heat storage is depleted by heat addition with a water-tube boiler using natural gas, biofuels, or ultimately hydrogen. Fuel consumption for assured peaking capacity is small because most of the time the heat storage system meets peak electricity demands. The same systems enable reliable low-cost heat production for industry. Such systems enable an all nuclear or nuclear/hydro/wind/solar/geothermal low-carbon electricity grid.