ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Pan Wu, David Novog
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 364-376
Technical Paper | doi.org/10.1080/00295450.2018.1495000
Articles are hosted by Taylor and Francis Online.
The CTF code is a subchannel thermal-hydraulic code developed based on the COBRA-TF code. In this work, the CTF code is used to predict the single- and two-phase heat transfer, pressure drop, onset of nucleate boiling, and dryout heat flux in water at several temperatures and pressures under steady-state and transient conditions. The conditions cover a range of pressures from 2 to 6 MPa, flows from 1000 to 2500 kg/(m2∙s), and inlet subcooling from 40°C to 70°C. Experimental heat balance tests show agreement between coolant enthalpy change and the electrical power with a difference of no more than 1.0%. Steady-state experiments were performed at constant inlet conditions in a cylindrical directly heated Inconel test section where the wall temperatures were measured at each power level. For each steady-state test, the experimental boiling curve is compared to CTF predictions. Transient experiments were performed by initiating a blowdown from the test section outlet plenum using a fast-acting valve with an open time of less than 100 ms. The time of dryout in these transient experiments is compared with the CTF results to clarify the pressure transient effect on the dryout prediction.