ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Xingang Zhao, Aaron J. Wysocki, Koroush Shirvan, Robert K. Salko
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 338-351
Technical Paper | doi.org/10.1080/00295450.2018.1507221
Articles are hosted by Taylor and Francis Online.
As part of the Consortium for Advanced Simulation of Light Water Reactors, the subchannel code CTF is being used for single-phase and two-phase flow analysis under light water reactor operating conditions. Accurate determination of flow distribution, pressure drop, and void content is crucial for predicting margins to thermal crisis and ensuring more efficient plant performance. In preparation for the intended applications, CTF has been validated against data from experimental facilities comprising the General Electric (GE) 3 × 3 bundle, the boiling water reactor full-size fine-mesh bundle tests (BFBTs), the Risø tube, and the pressurized water reactor subchannel and bundle tests (PSBTs). Meanwhile, the licensed, well-recognized subchannel code VIPRE-01 was used to generate a baseline set of simulations for the targeted tests and solution parameters were compared to the CTF results.
The flow split verification problem and single-phase GE 3 × 3 results are essentially in perfect agreement between the two codes. For the two-phase GE 3 × 3 cases, flow and quality discrepancies arise in the annular-mist flow regime, yet significant improvement is observed in CTF when void drift and two-phase turbulent mixing enhancement are considered. The BFBT pressure drop benchmark shows close agreement between predicted and measured results in general, although considerable overprediction by CTF is observed at relatively high void locations of the facility. This overestimation tendency is confirmed by the Risø cases. While overall statistics are satisfactory, both BFBT and PSBT bubbly-to-churn flow void contents are markedly overpredicted by CTF.
The issues with two-phase closures such as turbulent mixing, interfacial and wall friction, and subcooled boiling heat transfer need to be addressed. Preliminary sensitivity studies are presented herein, but more advanced models and code stability analysis require further investigation.