ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Cen Wei, Bao-Wen Yang, Bin Han, Aiguo Liu
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 328-337
Technical Paper | doi.org/10.1080/00295450.2018.1510266
Articles are hosted by Taylor and Francis Online.
Mixing vanes attached to a space grid play an important role in heat transfer enhancement, thus increasing critical heat flux. Subchannel analysis and computational fluid dynamics (CFD) are usually applied to simulate the coolant flow behavior in a fuel assembly. In subchannel analysis, the mixing effect, mainly turbulent mixing, produced by mixing vane grids (MVGs) is represented by a coefficient β without considering flow direction and mixing vane arrangement. However, in CFD computation, the mixing effect can be simulated more closely. The objective of this paper is to evaluate the mixing coefficient β used in subchannel analysis by a CFD code. Then, the effects of the three MVGs are compared qualitatively and quantitatively.
Through the analysis, an effective mixing coefficient adopted in the subchannal codes should be related to the vane arrangement. Improvements for β are needed to better reflect the true mixing function from the spacer grid relevant to its mixing vane arrangement. Besides the lateral velocity distribution, secondary flow intensity, temperature distribution, and thermal nonuniformity are different for different vane arrangement patterns.