ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Guanyi Wang, Yikuan Yan, Shanbin Shi, Zhuoran Dang, Xiaohong Yang, Mamoru Ishii
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 297-306
Technical Paper | doi.org/10.1080/00295450.2018.1493317
Articles are hosted by Taylor and Francis Online.
As one of the future directions of nuclear energy development, small modular reactor (SMR) designs meet the demands of safety, sustainability, and efficiency by eliminating circulating pumps and using natural circulation–driven flows to transfer fission energy to power. However, natural circulation–driven flows could be affected by two-phase-flow instability that may occur during accidental scenarios of pressurized water reactor (PWR)-type SMRs due to relatively small driving force. In view of the influence of two-phase-flow instability during accident transients for a PWR-type SMR, experiments are performed in a well-scaled test facility to investigate potential thermal-hydraulic flow instabilities during blowdown events. The test facility has a height of 3.44 m, and the operating pressure limit is 1.0 MPa. The scaling analyses ensure that the scaled phenomena, i.e., depressurization of the reactor pressure vessel (RPV) and emergency core cooling system valve actuation, could be accurately simulated in the test facility. Important thermal-hydraulic parameters including RPV pressure, containment pressure, local void fraction and temperature, pressure drop, and natural circulation flow rate are measured and analyzed during the blowdown events. Test results show that throughout the experiment the liquid level is always maintained above the heated core and the RPV pressure decreases. Oscillations of the natural circulation flow rate, water level, and pressure drop are observed during blowdown transients. Specific reasons for and mechanisms of the observed instability phenomena are discussed.