ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Guanyi Wang, Yikuan Yan, Shanbin Shi, Zhuoran Dang, Xiaohong Yang, Mamoru Ishii
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 297-306
Technical Paper | doi.org/10.1080/00295450.2018.1493317
Articles are hosted by Taylor and Francis Online.
As one of the future directions of nuclear energy development, small modular reactor (SMR) designs meet the demands of safety, sustainability, and efficiency by eliminating circulating pumps and using natural circulation–driven flows to transfer fission energy to power. However, natural circulation–driven flows could be affected by two-phase-flow instability that may occur during accidental scenarios of pressurized water reactor (PWR)-type SMRs due to relatively small driving force. In view of the influence of two-phase-flow instability during accident transients for a PWR-type SMR, experiments are performed in a well-scaled test facility to investigate potential thermal-hydraulic flow instabilities during blowdown events. The test facility has a height of 3.44 m, and the operating pressure limit is 1.0 MPa. The scaling analyses ensure that the scaled phenomena, i.e., depressurization of the reactor pressure vessel (RPV) and emergency core cooling system valve actuation, could be accurately simulated in the test facility. Important thermal-hydraulic parameters including RPV pressure, containment pressure, local void fraction and temperature, pressure drop, and natural circulation flow rate are measured and analyzed during the blowdown events. Test results show that throughout the experiment the liquid level is always maintained above the heated core and the RPV pressure decreases. Oscillations of the natural circulation flow rate, water level, and pressure drop are observed during blowdown transients. Specific reasons for and mechanisms of the observed instability phenomena are discussed.