ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Wei Xu, Jianhua Xia, Xiaojing Liu, Xu Cheng, Wei Zeng
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 281-296
Technical Paper | doi.org/10.1080/00295450.2018.1457887
Articles are hosted by Taylor and Francis Online.
Bottom reflooding is the third phase when a large-break loss-of-coolant accident occurs. Due to the complexity and importance, especially in a distinct narrow rectangular channel, various research methods can be utilized to understand the whole process. Test facility is established to figure out the thermal-hydraulic behaviors during bottom reflooding, and the acquisition of accurate solid temperature is essential. The inverse heat transfer problem method is applied to take full advantage of experimental data. In addition, a bottom reflooding transient (BRT) code is utilized to calculate various parameters conveniently. A three-dimensional heat conduction equation for a transient state is solved implicitly to obtain solid temperature distribution, surface heat flux, and heat transfer coefficient at the cooling surface. The simulation results of the BRT code are compared with that of RELAP5, an available system code, and the experimental results. A conclusion that can be derived is that the BRT code shows good applicability of simulating bottom reflooding in a narrow rectangular channel.