ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
Matthieu A. André, Ross A. Burns, Paul M. Danehy, Seth R. Cadell, Brian G. Woods, Philippe M. Bardet
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 262-271
Technical Paper | doi.org/10.1080/00295450.2018.1516954
Articles are hosted by Taylor and Francis Online.
Molecular tagging velocimetry (MTV) is a nonintrusive velocimetry technique based on laser spectroscopy. It is particularly effective in challenging gas flow conditions encountered in thermal hydraulics where particle-based methods such as particle image (or tracking) velocimetry do not perform well. The main principles for designing and operating this diagnostic are presented as well as a set of gases that have been identified as potential seeds. Two gases [H2O and nitrous oxide (N2O)] have been characterized extensively for thermodynamic conditions ranging from standard temperature and pressure to environments encountered in integral effects test (IET) facilities for high-temperature gas reactors. A flexible, modular, and transportable laser system has been designed and demonstrated with H2O and N2O seed gases. The laser system enables determining the optimum excitation wavelength, tracer concentration, and timing parameters. Velocity precision and thermodynamic domain of applicability are discussed for both tracers. The spectroscopic nature of the diagnostics enables one to perform first-principle uncertainty analysis, which makes it attractive for validating numerical models.
Molecular tagging velocimetry is demonstrated for two flows. First, in blowdown tests with H2O seed, the unique laser system enables one of the largest dynamic ranges reported to date for velocimetry: 5000:1 (74 dB). N2O-MTV is then deployed in situ in an IET facility, i.e., the High-Temperature Test Facility at Oregon State University, during a depressurized conduction cooldown (DCC) event. Data enable researchers to gain insights into flow instabilities present during DCC. Thus, MTV shows a strong potential to gain a fundamental understanding of gas flows in nuclear thermal hydraulics and to provide validation data for numerical solvers.