ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Shikha A. Ebrahim, Ece Alat, Faruk A. Sohag, Valerie Fudurich, Shi Chang, Fan-Bill Cheung, Stephen M. Bajorek, Kirk Tien, Chris L. Hoxie
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 226-238
Technical Paper | doi.org/10.1080/00295450.2018.1490122
Articles are hosted by Taylor and Francis Online.
Film boiling is an important phenomenon in the evaluation of an emergency core cooling system following a hypothetical loss of coolant accident in a nuclear reactor. This study investigates the effects of liquid subcooling, surface oxidation, and surface materials on the minimum film-boiling temperature . Quenching experiments were performed using stainless steel and zirconium (Zr) test samples. The samples were heated to a temperature well above then plunged vertically in various degrees of liquid subcooling pools. A visualization study using a high-speed camera was conducted to capture the quenching behavior. Additionally, surface characterization analyses including X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy were performed to quantify the surface conditions. Results indicate that liquid subcooling has a strong influence on . The visualization study shows a very thin vapor formation around the test sample for higher subcooling pools which explains the enhancement in the heat transfer. It is observed from the surface characterization analyses that the variations in the surface condition of the stainless steel and Zr causes the vapor bubbles to depart differently in the nucleate boiling regime. Furthermore, the effect of surface oxidation is clearly noticeable in the Zr test sample compared to the stainless steel test sample due to the oxidation kinematic of each substrate material. It is found that the substrate thermophysical properties have a significant impact on . Comparing the bare substrates shows that for the same degrees of liquid subcooling pool, the value of for the Zr sample is ∼30°C to 60°C higher compared to the stainless steel sample. Moreover, increasing the degrees of liquid subcooling contributes to a significant increase in that varies between ∼50°C and 70°C for both samples.