ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Sunming Qin, Benedikt Krohn, John Downing, Victor Petrov, Annalisa Manera
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 213-225
Technical Paper | doi.org/10.1080/00295450.2018.1470864
Articles are hosted by Taylor and Francis Online.
Turbulent round free jets are one of the most common jet types, which have been intensively studied in the research community for over 90 years. Due to its characteristics of momentum transport in free shear layers, this type of jet is widely used in several industrial applications varying from nuclear reactor safety analysis to aerospace jet engine designs. Focusing on close-to-jet (near-field) and self-similar regions, the entrainment and momentum transport can be properly described by the Reynolds numbers of the flow fields.
To establish a nonconfined free jet, an experimental facility was built with a jet nozzle diameter of 12.7 mm, located at the bottom of a cubic tank with a 1-m side length. The jet flow is realized by a servo-motor-driven piston to avoid possible fluctuations introduced by other motor options. Nominal jet Reynolds numbers range from 5000 up to 22 500. High-speed and time-resolved particle imaging velocimetry techniques are used to measure the velocity fields in the vertical midplane of the jet for both investigated flow fields. The adopted setup has a spatial resolution of 209 × 209 µm2 for near-field regions and 684 × 684 µm2 for self-similar regions and thus covers the Taylor microscale for all cases presented in this paper. Experimental results are presented in terms of turbulent statistics and the frequency spectrum of the velocities. The sources of uncertainties associated with the measured velocity field are quantified. The results are in good agreement with previously published data. The obtained energy spectra confirm Kolmogorov’s theory in the inertial subrange. Coherent structures, obtained with two-point spatial correlations of variances of velocities, show growth in penetration depth with increased downstream distance, which is consistent with the analysis of temporal correlation fields.