ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Davide Papini, Michele Andreani, Pascal Steiner, Bojan Ničeno, Jens-Uwe Klügel, Horst-Michael Prasser
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 153-173
Technical Paper | doi.org/10.1080/00295450.2018.1505356
Articles are hosted by Taylor and Francis Online.
The installation of passive autocatalytic recombiners (PARs) in the containment of operating nuclear power plants (NPPs) is increasingly based on three-dimensional studies of severe accidents that accurately predict the hydrogen pathways and local accumulation regions in containment and examine the mitigation effects of the PARs on the hydrogen risk. The GOTHIC (Generation Of Thermal-Hydraulic Information for Containments) code is applied in this paper to study the effectiveness of the PARs installed in the Gösgen NPP in Switzerland. A fast release of a mixture of hydrogen and steam from the hot leg during a total station blackout is chosen as the limiting scenario. The PAR modeling approach is qualified simulating two experiments performed in the frame of the OECD/NEA (Organisation for Economic Co-operation and Development/Nuclear Energy Agency) THAI (Thermal-hydraulics, Hydrogen, Aerosols and Iodine) project.
The results of the plant analyses show that the recombiners cannot prevent the formation of a stratified cloud of hydrogen (10% molar concentration), but they can mitigate the hydrogen accumulation once formed. In the case of the analyzed fast release scenario, which is characterized by increasing loads with large initial flow rate and high hydrogen concentration values, it is shown that, when a large number of recombiners are installed, the global outcome in relation to the combustion risk does not depend on the details of the single PAR behavior. The hydrogen ignition risk can be fully mitigated in a timeframe ranging from 15 to 30 min after the fast release, according to the dependence of the PAR efficiency model on the adopted parameters.