ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Chan Eok Park, Jong Ho Choi, Gyu Cheon Lee, Sang Yong Lee
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 77-93
Technical Paper | doi.org/10.1080/00295450.2018.1501990
Articles are hosted by Taylor and Francis Online.
The system thermal-hydraulic code SPACE adopts a multidimensional two-fluid, three-field model to simulate two-phase-flow phenomena encountered during various anticipated transients and postulated accidents of pressurized water reactors. The applicable mesh systems include structured/staggered and unstructured/collocated ones. The staggered mesh system is based on the orthogonal hexahedral shape of cells and their surrounding faces, but it is generalized to describe not only multidimensional Cartesian meshes but also cylindrical meshes and one-dimensional pipe flow networks. The unstructured/collocated mesh system is used to represent more complex geometry using hexahedron, tetrahedron, pyramid, or prism shapes of cells. The structured/staggered mesh system hydraulic solver and the unstructured/collocated mesh system hydraulic solver are merged into a unified version of SPACE so that those hydraulic solvers can analyze simultaneously a complicated system comprising several structured and unstructured mesh blocks. In this paper, the governing equations, mesh systems, and numerical formulations for SPACE are introduced, and the application results are presented for several conceptual problems including the connection of heterogeneous mesh blocks.