ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
T. Höhne, E. Krepper, D. Lucas, G. Montoya
Nuclear Technology | Volume 205 | Number 1 | January-February 2019 | Pages 48-56
Technical Paper | doi.org/10.1080/00295450.2018.1495025
Articles are hosted by Taylor and Francis Online.
The paper presents the extension of the GENeralized TwO Phase flow (GENTOP) model for phase transfer and discusses the submodels used. Boiling flow inside a wall heated vertical pipe is simulated by a multifield computational fluid dynamics (CFD) approach. Subcooled water enters the pipe from the lower end and heats up first in the near-wall region leading to the generation of small bubbles. Farther along the pipe, larger and larger bubbles are generated by coalescence and evaporation. This leads to transitions of the two-phase-flow patterns from bubbly to churn-turbulent and annular flow. The CFD simulation is based on the recently developed GENTOP concept. It is a multifield model using the Euler-Euler approach. It allows the consideration of different local flow morphologies including transitions between them. Small steam bubbles are handled as dispersed phases while the interface of large gas structures is statistically resolved. The GENTOP submodels and the wall boiling model need a constant improvement and separate, intensive validation effort using CFD-grade experiments.