ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Tatsuya Sakurahara, Zahra Mohaghegh, Seyed Reihani, Ernie Kee
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 354-377
Technical Paper | doi.org/10.1080/00295450.2018.1486159
Articles are hosted by Taylor and Francis Online.
Nearly half of the U.S. nuclear power plants (NPPs) are in the process of transitioning, or have already transitioned, to a risk-informed, performance-based fire protection program. For this transition, Fire Probabilistic Risk Assessment (Fire PRA) is used as a foundation for fire risk evaluation. To increase realism in Fire PRA by reducing conservative bias, the authors have developed an Integrated Probabilistic Risk Assessment (I-PRA) methodological framework that does not require major changes to the existing plant Probabilistic Risk Assessments (PRAs). The underlying failure mechanism models associated with fire events are developed in a separate module, which can be interfaced and connected to the existing plant PRA. This paper explains the areas of methodological advancements in I-PRA, comparing them with the existing Fire PRA of NPPs. This comparison is further demonstrated in a realistic case study that applies the I-PRA framework to a critical fire-induced scenario at an NPP. The core damage frequency (CDF) for the selected scenario, computed by the I-PRA framework, is compared with the results of the Full Compartment Burn screening method and the existing Fire PRA methodology. Using the I-PRA framework, the CDF for the selected scenario has decreased by a factor of 20 compared with the Full Compartment Burn screening approach and by a factor of 2 compared to the existing Fire PRA methodology based on NUREG/CR-6850 and the subsequent NUREGs that have updated the data and methods for individual steps.