ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Tatsuya Sakurahara, Zahra Mohaghegh, Seyed Reihani, Ernie Kee
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 354-377
Technical Paper | doi.org/10.1080/00295450.2018.1486159
Articles are hosted by Taylor and Francis Online.
Nearly half of the U.S. nuclear power plants (NPPs) are in the process of transitioning, or have already transitioned, to a risk-informed, performance-based fire protection program. For this transition, Fire Probabilistic Risk Assessment (Fire PRA) is used as a foundation for fire risk evaluation. To increase realism in Fire PRA by reducing conservative bias, the authors have developed an Integrated Probabilistic Risk Assessment (I-PRA) methodological framework that does not require major changes to the existing plant Probabilistic Risk Assessments (PRAs). The underlying failure mechanism models associated with fire events are developed in a separate module, which can be interfaced and connected to the existing plant PRA. This paper explains the areas of methodological advancements in I-PRA, comparing them with the existing Fire PRA of NPPs. This comparison is further demonstrated in a realistic case study that applies the I-PRA framework to a critical fire-induced scenario at an NPP. The core damage frequency (CDF) for the selected scenario, computed by the I-PRA framework, is compared with the results of the Full Compartment Burn screening method and the existing Fire PRA methodology. Using the I-PRA framework, the CDF for the selected scenario has decreased by a factor of 20 compared with the Full Compartment Burn screening approach and by a factor of 2 compared to the existing Fire PRA methodology based on NUREG/CR-6850 and the subsequent NUREGs that have updated the data and methods for individual steps.