ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Eva Brayfindley, Ralph C. Smith, John Mattingly, Robert Brigantic
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 343-353
Technical Paper | doi.org/10.1080/00295450.2018.1490123
Articles are hosted by Taylor and Francis Online.
Spent fuel monitoring and characterization has been central to safeguards and nuclear facility monitoring for many years. The Digital Cerenkov Viewing Device (DCVD) has been used since the 1980s as a method of defect detection in spent fuel. In recent years, the accounting for large quantities of spent fuel before storage has renewed interest in this relatively quick and inexpensive method. This has an impact not only in safeguards, but also for nuclear power facilities, as accounting can be a long, arduous, and costly process. Additionally, the DCVD demonstrates limited accuracy in more complex cases such as substitution of a fuel rod with steel or a partial defect detection. A second method, gamma emission tomography (GET) has been explored as an improved defect detection method, but is much more expensive and invasive than DCVD. The present investigation identifies deficiencies in both methods and proposes a combination of data gathered from each method to address these deficiencies for improved spent fuel characterization. Initial results are promising, showing 97% detection of a single missing fuel rod when the data types are combined, versus approximately 50% and 70%, respectively, for DCVD and GET data on their own. These classification results are obtained with algorithms derived from facial recognition and applied to this problem, yielding unique accuracy in near real time while also maintaining the information barrier between output and measurement desired in safeguards.