ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2022 ANS Annual Meeting
June 12–16, 2022
Anaheim, CA|Anaheim Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2022
Jan 2022
Latest Journal Issues
Nuclear Science and Engineering
June 2022
Nuclear Technology
Fusion Science and Technology
Latest News
2022 ANS Annual Meeting preview webinar is coming
ANS will host its first fully in-person national meeting since the start of the COVID-19 pandemic when the 2022 ANS Annual Meeting takes place in Anaheim, Calif., June 12-16.
In anticipation of the event, ANS is putting on a webinar titled ”Annual Meeting Preview: Getting back to what we do best.” This hourlong sneak peek is on May 24 at 2:00 p.m. (EDT) and is free and open to everyone. The program will feature organizers who have been planning the many technical sessions for ANS Annual as well as the three embedded topical meetings:
Dong Hun Lee, Seungjin Kim, Han Young Yoon, Jae Jun Jeong
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 330-342
Technical Paper | dx.doi.org/10.1080/00295450.2018.1475193
Articles are hosted by Taylor and Francis Online.
Two-phase flow in a horizontal pipe has a pronounced feature; that is, two-phase-flow parameters are highly nonsymmetric because gravity is perpendicular to the mean flow direction. Thus, three-dimensional analysis is necessary for the accurate prediction of two-phase flow in a horizontal pipe, such as the hot leg and cold leg of a pressurized water reactor and the pressure tubes in a CANDU reactor. In this study, we simulated bubbly flows in horizontal pipes using the CUPID code, which adopts a two-fluid, three-field model for two-phase flow. In the preliminary calculations, it was found that the particle-averaged two-fluid momentum equation, rather than the standard two-fluid momentum equation, predicts a physically reasonable slip ratio and nondrag forces, except turbulent dispersion forces have negligible effects on the radial void distribution when the particle-averaged two-fluid momentum equation is used. Based on the results, we selected the physical models and computational mesh for subsequent code assessment using various bubbly flow experiments in horizontal pipes. The turbulent dispersion force model was improved to take into account the large void fraction change at the top. The results of the code assessment show good predictions for the axial pressure drop, liquid velocity, and turbulent kinetic energy profile and predict reasonably well the effects of jl and jg on two-phase-flow parameters. However, additional studies are needed for more accurate prediction of the nonsymmetric distribution of gas velocity and turbulent kinetic energy.