ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Seok Yoon, Min-Jun Kim, Seung-Rae Lee, Geon-Young Kim
Nuclear Technology | Volume 204 | Number 2 | November 2018 | Pages 213-226
Technical Paper | doi.org/10.1080/00295450.2018.1471909
Articles are hosted by Taylor and Francis Online.
A deep geological repository has been considered as one of the most appropriate options for the disposal of high-level radioactive waste (HLW), and it will be constructed in a host rock area at a depth of 500 to 1000 m below the ground surface. The geological repository system is based on the concept of an engineered barrier system, and it consists of a disposal canister with packed spent fuel, buffer material, backfill material, and intact rock. The buffer plays an important role to assure the disposal safety of HLW since it can restrain the release of radionuclides and protect the canister from the inflow of groundwater. Since an increased heat quantity is released from the disposal canister into the surrounding buffer material, the thermal conductivity of the buffer material constitutes a key parameter needed to analyze the entire disposal safety. Therefore, this study presents a thermal conductivity prediction model for compacted bentonite buffer material from Kyungju, which is the only bentonite produced in Korea. The thermal conductivity of the compacted bentonite buffer from Kyungju was measured using a hot-wire method according to varying degrees of saturation, dry density, and temperature. The measurements showed that the thermal conductivity was concurrently influenced by the degree of saturation, dry density, and temperature variation. A regression model was proposed to predict the thermal conductivity of the compacted bentonite buffer from Kyungju using the degree of saturation and the dry density as the dependent variables. An additional regression model was also introduced that incorporated the temperature variation as an additional dependent variable, and the two models were directly compared with each other.