ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2022 ANS Annual Meeting
June 12–16, 2022
Anaheim, CA|Anaheim Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2022
Jan 2022
Latest Journal Issues
Nuclear Science and Engineering
June 2022
Nuclear Technology
Fusion Science and Technology
Latest News
A passionate call to save Diablo Canyon
In a recent opinion piece for the San Luis Obispo Tribune, Heather Hoff describes her conversion from nuclear energy skeptic to advocate and lays out the case for keeping the Diablo Canyon nuclear power plant open beyond its planned closure in 2025.
Hoff, who is an operations procedure writer at Diablo Canyon, tells how she spent years "excessively and sometimes annoyingly" investigating her concerns about the safety of nuclear after she was first hired at Diablo Canyon. She adds that she almost quit her job after the Fukushima accident until realizing that many concerns about that event were triggered by "fear of nuclear, rather than nuclear itself.”
Helen Winberg-Wang
Nuclear Technology | Volume 204 | Number 2 | November 2018 | Pages 184-194
Technical Paper | dx.doi.org/10.1080/00295450.2018.1469348
Articles are hosted by Taylor and Francis Online.
Diffusion experiments under stagnant conditions in a constant aperture and a variable aperture slot were made to obtain data for simulation of simultaneous flow and diffusion in fractures. This approach was necessitated by the need to avoid buoyancy-induced flow caused by density differences generated by the presence of a tracer. For this purpose, to avoid flow but negligibly influence diffusion the slots were filled with agar, which generates a 99% porous matrix, which negligibly affects diffusion but essentially stops flow. A simple photographic technique was used to follow diffusion and to determine the aperture distribution on the variable aperture slot. With the obtained data, numerical simulations were performed to illustrate how a solute diffuses from a source into the water seeping past. The results support the simple analytical solution that has been used to determine the escape of radionuclides from a damaged canister containing spent nuclear fuel in a geologic repository in fractured rock.