ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—October through December
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from October through December 2024.
Jaeseok Heo, Kyung Doo Kim, Byoung Jae Kim
Nuclear Technology | Volume 204 | Number 2 | November 2018 | Pages 162-171
Technical Paper | doi.org/10.1080/00295450.2018.1471908
Articles are hosted by Taylor and Francis Online.
This paper deals with numerical challenges associated with simulating thermal-hydraulic phenomena in nuclear reactors with one-dimensional system analysis codes. The main focus of this research is directed toward assessment of the pressure gradient in vertically stratified flow, particularly the separate pressure drop effects for gas and liquid phases along the control cell. The pressure drop term in momentum conservation currently being developed based on the assumption of gas and liquid combined pressure drop was redefined such that two different pressures were imposed for gas and liquid separately. The verification of the proposed momentum equation for a vertically stratified flow was completed through simulations of the liquid velocity in a U-shaped manometer. Sensitivity analysis was also performed by increasing liquid mass in the pipe leading to different positions of the liquid-vapor interface from the bottom of each manometer pipe when the flow oscillation is stopped; i.e., the interfaces are not only cell boundaries but also various positions between cell edges. As a result, improved simulation results were obtained using the modified equations as it was indicated that the oscillation of fluid decays over time while the original solution for the large pipe does not converge to zero due to a mainly incorrect pressure drop term.