ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
Nicholas Chornoboy, Alexandra Levinsky, Charles Kitson, Blair P. Bromley
Nuclear Technology | Volume 204 | Number 1 | October 2018 | Pages 110-118
Technical Note | doi.org/10.1080/00295450.2018.1454229
Articles are hosted by Taylor and Francis Online.
Lattice physics depletion calculations were performed to obtain postburnup fuel compositions for several candidate advanced heavy water reactor fuels. These fuel compositions were used as input for a deep geological repository (DGR) modeling tool for hydrogeology simulations to simulate the transport of radionuclides to the surface, to find the radionuclides that reach the surface path through the biosphere, and to estimate the hypothetical dose rate to humans located above the DGR.
Three primary factors were found to contribute to surface dose rate: burnup, composition of the primary waste matrix, and percentage of thorium in the fuel. Higher burnup and thorium percentage contribute to increased surface dose rates through increased 129I production, while a primarily uranium waste matrix increases surface dose rate through faster dissolution leading to increased radionuclide release rate from the fuel. For all the hypothetical fuels investigated, the estimated dose rates are well within the Nuclear Waste Management Organization’s hypothetical DGR’s acceptance criterion of 0.3 mSv/year.