ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Nicholas Chornoboy, Alexandra Levinsky, Charles Kitson, Blair P. Bromley
Nuclear Technology | Volume 204 | Number 1 | October 2018 | Pages 110-118
Technical Note | doi.org/10.1080/00295450.2018.1454229
Articles are hosted by Taylor and Francis Online.
Lattice physics depletion calculations were performed to obtain postburnup fuel compositions for several candidate advanced heavy water reactor fuels. These fuel compositions were used as input for a deep geological repository (DGR) modeling tool for hydrogeology simulations to simulate the transport of radionuclides to the surface, to find the radionuclides that reach the surface path through the biosphere, and to estimate the hypothetical dose rate to humans located above the DGR.
Three primary factors were found to contribute to surface dose rate: burnup, composition of the primary waste matrix, and percentage of thorium in the fuel. Higher burnup and thorium percentage contribute to increased surface dose rates through increased 129I production, while a primarily uranium waste matrix increases surface dose rate through faster dissolution leading to increased radionuclide release rate from the fuel. For all the hypothetical fuels investigated, the estimated dose rates are well within the Nuclear Waste Management Organization’s hypothetical DGR’s acceptance criterion of 0.3 mSv/year.