ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Startup company looks to develop fusion-powered ships
Fusion energy for commercial use is a technology that is yet to be realized, but one company is already setting its sights on taking it from land to sea.
Nicholas Chornoboy, Alexandra Levinsky, Charles Kitson, Blair P. Bromley
Nuclear Technology | Volume 204 | Number 1 | October 2018 | Pages 110-118
Technical Note | doi.org/10.1080/00295450.2018.1454229
Articles are hosted by Taylor and Francis Online.
Lattice physics depletion calculations were performed to obtain postburnup fuel compositions for several candidate advanced heavy water reactor fuels. These fuel compositions were used as input for a deep geological repository (DGR) modeling tool for hydrogeology simulations to simulate the transport of radionuclides to the surface, to find the radionuclides that reach the surface path through the biosphere, and to estimate the hypothetical dose rate to humans located above the DGR.
Three primary factors were found to contribute to surface dose rate: burnup, composition of the primary waste matrix, and percentage of thorium in the fuel. Higher burnup and thorium percentage contribute to increased surface dose rates through increased 129I production, while a primarily uranium waste matrix increases surface dose rate through faster dissolution leading to increased radionuclide release rate from the fuel. For all the hypothetical fuels investigated, the estimated dose rates are well within the Nuclear Waste Management Organization’s hypothetical DGR’s acceptance criterion of 0.3 mSv/year.