ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Jae-Won Lee, Do-Youn Lee, Young-Soon Lee, Jae-Hwan Yang, Geun-Il Park, Jung-Won Lee, Hyoung-Mun Kwon, Yung-Zun Cho
Nuclear Technology | Volume 204 | Number 1 | October 2018 | Pages 101-109
Technical Paper | doi.org/10.1080/00295450.2018.1469347
Articles are hosted by Taylor and Francis Online.
Performance tests of mechanical decladding technology for estimating the feeding portions of the recovered fuel fragments to an electrolytic reduction process were conducted in terms of the fuel rod burnups of 27.3 to 65.7 GWd/tonne uranium (tU) for the used pressurized water reactor nuclear fuel. The decladding efficiencies with fuel burnups were quantitatively obtained from slitting decladding tests. Based on the average fuel rod burnups, fuel rods with an average burnup of up to 52.3 GWd/tU showed above 99%, but higher burnup fuels of above 54.9 GWd/tU were below 97.52% in the decladding efficiency. It was interpreted that variations in decladding efficiency with fuel burnups were closely linked to the opening characteristics of the gap between the pellets and cladding. However, the fuel fragment size distribution after slitting decladding has little difference in fuel burnup changes between 34.8 and 55.4 GWd/tU. Hence, feeding portions of the fuel fragments from an assembly basis by using the decladding efficiency and recovered fragment size distribution data were estimated with burnup variations of 35 to 52.5 GWd/tU.