ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Jae-Won Lee, Do-Youn Lee, Young-Soon Lee, Jae-Hwan Yang, Geun-Il Park, Jung-Won Lee, Hyoung-Mun Kwon, Yung-Zun Cho
Nuclear Technology | Volume 204 | Number 1 | October 2018 | Pages 101-109
Technical Paper | doi.org/10.1080/00295450.2018.1469347
Articles are hosted by Taylor and Francis Online.
Performance tests of mechanical decladding technology for estimating the feeding portions of the recovered fuel fragments to an electrolytic reduction process were conducted in terms of the fuel rod burnups of 27.3 to 65.7 GWd/tonne uranium (tU) for the used pressurized water reactor nuclear fuel. The decladding efficiencies with fuel burnups were quantitatively obtained from slitting decladding tests. Based on the average fuel rod burnups, fuel rods with an average burnup of up to 52.3 GWd/tU showed above 99%, but higher burnup fuels of above 54.9 GWd/tU were below 97.52% in the decladding efficiency. It was interpreted that variations in decladding efficiency with fuel burnups were closely linked to the opening characteristics of the gap between the pellets and cladding. However, the fuel fragment size distribution after slitting decladding has little difference in fuel burnup changes between 34.8 and 55.4 GWd/tU. Hence, feeding portions of the fuel fragments from an assembly basis by using the decladding efficiency and recovered fragment size distribution data were estimated with burnup variations of 35 to 52.5 GWd/tU.