ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
Zhang Yingzeng, Xiang Qingpei, Hao Fanhua, Guo Xiaofeng, Xiang Yongchun, Chu Chengsheng, Zeng Jun, Luo Fei, Ze Rende
Nuclear Technology | Volume 204 | Number 1 | October 2018 | Pages 83-93
Technical Paper | doi.org/10.1080/00295450.2018.1464839
Articles are hosted by Taylor and Francis Online.
Compton camera is a promising instrument for nuclear material imaging in arms control scenarios. In planning to build a Compton camera to detect the symmetry of shielded nuclear materials, the energy spectrum of gamma-rays escaping from the Steve Fetter Nuclear Warhead model is obtained using Monte Carlo simulation. Then, a point model is defined for our study. The proposed Compton camera uses a 5-cm × 5-cm × 1-mm double-sided silicon strips detector as the scattering detector and a segmented ϕ5.08 × 5.08-cm NaI(Tl) array as the absorbing detector. How high-energy gamma-rays impact low-energy characteristic gamma-ray imaging is studied. The result shows that high-energy gamma-rays will reduce the imaging accuracy and signal-to-noise ratio. The holistic angle resolution measured can reach 4.15 deg by all characteristic gamma-rays. The symmetry research result shows that the Compton camera can detect the symmetry property of a nuclear warhead with obvious symmetry or asymmetry.